Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435996

RESUMO

We investigate the behavior of systems of cells with intracellular molecular oscillators ("clocks") where cell-cell adhesion is mediated by differences in clock phase between neighbors. This is motivated by phenomena in developmental biology and in aggregative multicellularity of unicellular organisms. In such systems, aggregation co-occurs with clock synchronization. To account for the effects of spatially extended cells, we use the Cellular Potts Model (CPM), a lattice agent-based model. We find four distinct possible phases: global synchronization, local synchronization, incoherence, and anti-synchronization (checkerboard patterns). We characterize these phases via order parameters. In the case of global synchrony, the speed of synchronization depends on the adhesive effects of the clocks. Synchronization happens fastest when cells in opposite phases adhere the strongest ("opposites attract"). When cells of the same clock phase adhere the strongest ("like attracts like"), synchronization is slower. Surprisingly, the slowest synchronization happens in the diffusive mixing case, where cell-cell adhesion is independent of clock phase. We briefly discuss potential applications of the model, such as pattern formation in the auditory sensory epithelium.


Assuntos
Transtornos Mentais , Humanos , Adesão Celular , Difusão , Epitélio
2.
Cell Mol Life Sci ; 81(1): 2, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38043093

RESUMO

Ovarian cancer is amongst the most morbid of gynecological malignancies due to its diagnosis at an advanced stage, a transcoelomic mode of metastasis, and rapid transition to chemotherapeutic resistance. Like all other malignancies, the progression of ovarian cancer may be interpreted as an emergent outcome of the conflict between metastasizing cancer cells and the natural defense mounted by microenvironmental barriers to such migration. Here, we asked whether senescence in coelom-lining mesothelia, brought about by drug exposure, affects their interaction with disseminated ovarian cancer cells. We observed that cancer cells adhered faster on senescent human and murine mesothelial monolayers than on non-senescent controls. Time-lapse epifluorescence microscopy showed that mesothelial cells were cleared by a host of cancer cells that surrounded the former, even under sub-confluent conditions. A multiscale computational model predicted that such colocalized mesothelial clearance under sub-confluence requires greater adhesion between cancer cells and senescent mesothelia. Consistent with the prediction, we observed that senescent mesothelia expressed an extracellular matrix with higher levels of fibronectin, laminins and hyaluronan than non-senescent controls. On senescent matrix, cancer cells adhered more efficiently, spread better, and moved faster and persistently, aiding the spread of cancer. Inhibition assays using RGD cyclopeptides suggested the adhesion was predominantly contributed by fibronectin and laminin. These findings led us to propose that the senescence-associated matrisomal phenotype of peritoneal barriers enhances the colonization of invading ovarian cancer cells contributing to the metastatic burden associated with the disease.


Assuntos
Fibronectinas , Neoplasias Ovarianas , Feminino , Animais , Humanos , Camundongos , Epitélio , Peritônio/patologia , Matriz Extracelular , Neoplasias Ovarianas/patologia , Adesão Celular/fisiologia
3.
PeerJ ; 9: e11829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595062

RESUMO

Animal color patterns are widely studied in ecology, evolution, and through mathematical modeling. Patterns may vary among distinct body parts such as the head, trunk or tail. As large amounts of photographic data is becoming more easily available, there is a growing need for general quantitative methods for capturing and analyzing the full complexity and details of pattern variation. Detailed information on variation in color pattern elements is necessary to understand how patterns are produced and established during development, and which evolutionary forces may constrain such a variation. Here, we develop an approach to capture and analyze variation in melanistic color pattern elements in leopard geckos. We use this data to study the variation among different body parts of leopard geckos and to draw inferences about their development. We compare patterns using 14 different indices such as the ratio of melanistic versus total area, the ellipticity of spots, and the size of spots and use these to define a composite distance between two patterns. Pattern presence/absence among the different body parts indicates a clear pathway of pattern establishment from the head to the back legs. Together with weak within-individual correlation between leg patterns and main body patterns, this suggests that pattern establishment in the head and tail may be independent from the rest of the body. We found that patterns vary greatest in size and density of the spots among body parts and individuals, but little in their average shapes. We also found a correlation between the melanistic patterns of the two front legs, as well as the two back legs, and also between the head, tail and trunk, especially for the density and size of the spots, but not their shape or inter-spot distance. Our data collection and analysis approach can be applied to other organisms to study variation in color patterns between body parts and to address questions on pattern formation and establishment in animals.

4.
Biosystems ; 208: 104502, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34364929

RESUMO

The mesenchymal tissue of the developing vertebrate limb bud is an excitable medium that sustains both spatial and temporal periodic phenomena. The first of these is the outcome of general Turing-type reaction-diffusion dynamics that generate spatial standing waves of cell condensations. These condensations are transformed into the nodules and rods of the cartilaginous, and eventually (in most species) the bony, endoskeleton. In the second, temporal periodicity results from intracellular regulatory dynamics that generate oscillations in the expression of one or more gene whose products modulate the spatial patterning system. Here we review experimental evidence from the chicken embryo, interpreted by a set of mathematical and computational models, that the spatial wave-forming system is based on two glycan-binding proteins, galectin-1A and galectin-8 in interaction with each other and the cells that produce them, and that the temporal oscillation occurs in the expression of the transcriptional coregulator Hes1. The multicellular synchronization of the Hes1 oscillation across the limb bud serves to coordinate the biochemical states of the mesenchymal cells globally, thereby refining and sharpening the spatial pattern. Significantly, the wave-forming reaction-diffusion-based mechanism itself, unlike most Turing-type systems, does not contain an oscillatory core, and may have evolved to this condition as it came to incorporate the cell-matrix adhesion module that enabled its pattern-forming capability.


Assuntos
Relógios Biológicos/fisiologia , Extremidades/crescimento & desenvolvimento , Periodicidade , Animais , Difusão , Humanos , Fatores de Tempo , Vertebrados
5.
Wiley Interdiscip Rev Syst Biol Med ; 12(4): e1485, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32212250

RESUMO

We review the current state of mathematical modeling of cartilage pattern formation in vertebrate limbs. We place emphasis on several reaction-diffusion type models that have been proposed in the last few years. These models are grounded in more detailed knowledge of the relevant regulatory processes than previous ones but generally refer to different molecular aspects of these processes. Considering these models in light of comparative phylogenomics permits framing of hypotheses on the evolutionary order of appearance of the respective mechanisms and their roles in the fin-to-limb transition. This article is categorized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Mechanistic Models Developmental Biology > Developmental Processes in Health and Disease Analytical and Computational Methods > Analytical Methods.


Assuntos
Extremidades/crescimento & desenvolvimento , Modelos Biológicos , Animais , Evolução Biológica , Extremidades/fisiologia , Organogênese , Vertebrados/crescimento & desenvolvimento
6.
Math Biosci ; 322: 108319, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32001201

RESUMO

The phenomenon of chondrogenic pattern formation in the vertebrate limb is one of the best studied examples of organogenesis. Many different models, mathematical as well as conceptual, have been proposed for it in the last fifty years or so. In this review, we give a brief overview of the fundamental biological background, then describe in detail several models which aim to describe qualitatively and quantitatively the corresponding biological phenomena. We concentrate on several new models that have been proposed in recent years, taking into account recent experimental progress. The major mathematical tools in these approaches are ordinary and partial differential equations. Moreover, we discuss models with non-local flux terms used to account for cell-cell adhesion forces and a structured population model with diffusion. We also include a detailed list of gene products and potential morphogens which have been identified to play a role in the process of limb formation and its growth.


Assuntos
Padronização Corporal , Condrogênese , Extremidades/crescimento & desenvolvimento , Modelos Teóricos , Organogênese , Animais , Humanos
7.
PLoS Comput Biol ; 15(4): e1006943, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31009449

RESUMO

Genotypic variation, environmental variation, and their interaction may produce variation in the developmental process and cause phenotypic differences among individuals. Developmental noise, which arises during development from stochasticity in cellular and molecular processes when genotype and environment are fixed, also contributes to phenotypic variation. While evolutionary biology has long focused on teasing apart the relative contribution of genes and environment to phenotypic variation, our understanding of the role of developmental noise has lagged due to technical difficulties in directly measuring the contribution of developmental noise. The influence of developmental noise is likely underestimated in studies of phenotypic variation due to intrinsic mechanisms within organisms that stabilize phenotypes and decrease variation. Since we are just beginning to appreciate the extent to which phenotypic variation due to stochasticity is potentially adaptive, the contribution of developmental noise to phenotypic variation must be separated and measured to fully understand its role in evolution. Here, we show that variation in the component of the developmental process corresponding to environmental and genetic factors (here treated together as a unit called the LALI-type) versus the contribution of developmental noise, can be distinguished for leopard gecko (Eublepharis macularius) head color patterns using mathematical simulations that model the role of random variation (corresponding to developmental noise) in patterning. Specifically, we modified the parameters of simulations corresponding to variation in the LALI-type to generate the full range of phenotypic variation in color pattern seen on the heads of eight leopard geckos. We observed that over the range of these parameters, variation in color pattern due to LALI-type variation exceeds that due to developmental noise in the studied gecko cohort. However, the effect of developmental noise on patterning is also substantial. Our approach addresses one of the major goals of evolutionary biology: to quantify the role of stochasticity in shaping phenotypic variation.


Assuntos
Evolução Biológica , Biologia Computacional/métodos , Genótipo , Fenótipo , Animais , Padronização Corporal/fisiologia , Lagartos/crescimento & desenvolvimento , Lagartos/fisiologia , Pigmentação da Pele/fisiologia
8.
Mech Dev ; 156: 41-54, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30867133

RESUMO

The tetrapod appendicular skeleton is initiated as spatially patterned mesenchymal condensations. The size and spacing of these condensations in avian limb buds are mediated by a reaction-diffusion-adhesion network consisting of galectins Gal-1A, Gal-8 and their cell surface receptors. In cell cultures, the appearance of condensations is synchronized across distances greater than the characteristic wavelength of their spatial pattern. We explored the possible role of observed oscillations of the transcriptional co-regulator Hes1 in this phenomenon. Treatment of micromass cultures with DAPT, a γ-secretase inhibitor, damped Hes1 oscillations, elevated Gal-1A and -8 mRNA levels, and led to irregularly-sized proto-condensations that subsequently fused. In developing limb buds, DAPT led to spatially non-uniform Hes1 expression and fused, truncated and misshapen digits. Periodicity in adhesive response to Gal-1A, a plausible Hes1-dependent function, was added to a previously tested mathematical model for condensation patterning by the two-galectin network. The enhanced model predicted regularization of patterning due to synchronization of Hes1 oscillations and resulting spatiotemporal coordination of its expression. The model also predicted changes in galectin expression and patterning in response to suppression of Hes1 expression, which were confirmed in in vitro experiments. Our results indicate that the two-galectin patterning network is regulated by Hes1 dynamics, the synchronization of which refines and regularizes limb skeletogenesis.


Assuntos
Galinhas/crescimento & desenvolvimento , Botões de Extremidades/crescimento & desenvolvimento , Esqueleto/crescimento & desenvolvimento , Fatores de Transcrição HES-1/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Animais , Padronização Corporal/efeitos dos fármacos , Técnicas de Cultura de Células , Embrião de Galinha , Galinhas/genética , Diaminas/farmacologia , Galectina 1/genética , Galectinas/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Botões de Extremidades/metabolismo , Mesoderma/crescimento & desenvolvimento , Organogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esqueleto/metabolismo , Tiazóis/farmacologia
9.
Prog Biophys Mol Biol ; 137: 12-24, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29325895

RESUMO

The paired appendages (fins or limbs) of jawed vertebrates contain an endoskeleton consisting of nodules, bars and, in some groups, plates of cartilage, or bone arising from replacement of cartilaginous templates. The generation of the endoskeletal elements occurs by processes involving production and diffusion of morphogens, with, variously, positive and negative feedback circuits, adhesion, and receptor dynamics with similarities to the mechanism for chemical pattern formation proposed by Alan Turing. This review presents a unified interpretation of the evolution and functioning of these mechanisms. Studies are described indicating that protocondensations, compacted mesenchymal cell aggregates that prefigure the appendicular skeleton, arise through the adhesive activity of galectin-1, a matricellular protein with skeletogenic homologs in all jawed vertebrates. In the cartilaginous and lobe-finned fishes (and to a variable extent in ray-finned fishes) it additionally cooperates with an isoform of galectin-8 to constitute a self-organizing network capable of generating arrays of preskeletal nodules, bars and plates. Further, in the tetrapods, a putative galectin-8 control module was acquired that may have enabled proximodistal increase in the number of protocondensations. In parallel to this, other self-organizing networks emerged that acted, via Bmp, Wnt, Sox9 and Runx2, as well as transforming factor-ß and fibronectin, to convert protocondensations into skeletal tissues. The progressive appearance and integration of these skeletogenic networks over evolution occurred in the context of an independently evolved system of Hox protein and Shh gradients that interfaced with them to tune the spatial wavelengths and refine the identities of the resulting arrays of elements.


Assuntos
Evolução Biológica , Extremidades/anatomia & histologia , Vertebrados , Animais , Extremidades/crescimento & desenvolvimento , Modelos Biológicos , Morfogênese
10.
BMC Evol Biol ; 16(1): 162, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538950

RESUMO

BACKGROUND: A multiscale network of two galectins Galectin-1 (Gal-1) and Galectin-8 (Gal-8) patterns the avian limb skeleton. Among vertebrates with paired appendages, chondrichthyan fins typically have one or more cartilage plates and many repeating parallel endoskeletal elements, actinopterygian fins have more varied patterns of nodules, bars and plates, while tetrapod limbs exhibit tandem arrays of few, proximodistally increasing numbers of elements. We applied a comparative genomic and protein evolution approach to understand the origin of the galectin patterning network. Having previously observed a phylogenetic constraint on Gal-1 structure across vertebrates, we asked whether evolutionary changes of Gal-8 could have critically contributed to the origin of the tetrapod pattern. RESULTS: Translocations, duplications, and losses of Gal-8 genes in Actinopterygii established them in different genomic locations from those that the Sarcopterygii (including the tetrapods) share with chondrichthyans. The sarcopterygian Gal-8 genes acquired a potentially regulatory non-coding motif and underwent purifying selection. The actinopterygian Gal-8 genes, in contrast, did not acquire the non-coding motif and underwent positive selection. CONCLUSION: These observations interpreted through the lens of a reaction-diffusion-adhesion model based on avian experimental findings can account for the distinct endoskeletal patterns of cartilaginous, ray-finned, and lobe-finned fishes, and the stereotypical limb skeletons of tetrapods.


Assuntos
Proteínas de Peixes/genética , Galectinas/genética , Esqueleto/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/genética , Animais , Evolução Biológica , Evolução Molecular , Peixes/anatomia & histologia , Peixes/classificação , Peixes/genética , Genômica , Morfogênese , Filogenia , Sequências de Repetição em Tandem , Vertebrados/classificação
11.
Bull Math Biol ; 74(3): 666-87, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21989567

RESUMO

We investigate a reaction-diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction-diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction-diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.


Assuntos
Modelos Biológicos , Animais , Difusão , Extremidades/embriologia , Proteínas Hedgehog/fisiologia , Deformidades Congênitas dos Membros/etiologia , Camundongos , Morfogênese/fisiologia
12.
Bull Math Biol ; 70(2): 460-83, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17965922

RESUMO

A recently proposed mathematical model of a "core" set of cellular and molecular interactions present in the developing vertebrate limb was shown to exhibit pattern-forming instabilities and limb skeleton-like patterns under certain restrictive conditions, suggesting that it may authentically represent the underlying embryonic process (Hentschel et al., Proc. R. Soc. B 271, 1713-1722, 2004). The model, an eight-equation system of partial differential equations, incorporates the behavior of mesenchymal cells as "reactors," both participating in the generation of morphogen patterns and changing their state and position in response to them. The full system, which has smooth solutions that exist globally in time, is nonetheless highly complex and difficult to handle analytically or numerically. According to a recent classification of developmental mechanisms (Salazar-Ciudad et al., Development 130, 2027-2037, 2003), the limb model of Hentschel et al. is "morphodynamic," since differentiation of new cell types occurs simultaneously with cell rearrangement. This contrasts with "morphostatic" mechanisms, in which cell identity becomes established independently of cell rearrangement. Under the hypothesis that development of some vertebrate limbs employs the core mechanism in a morphostatic fashion, we derive in an analytically rigorous fashion a pair of equations representing the spatiotemporal evolution of the morphogen fields under the assumption that cell differentiation relaxes faster than the evolution of the overall cell density (i.e., the morphostatic limit of the full system). This simple reaction-diffusion system is unique in having been derived analytically from a substantially more complex system involving multiple morphogens, extracellular matrix deposition, haptotaxis, and cell translocation. We identify regions in the parameter space of the reduced system where Turing-type pattern formation is possible, which we refer to as its "Turing space." Obtained values of the parameters are used in numerical simulations of the reduced system, using a new Galerkin finite element method, in tissue domains with nonstandard geometry. The reduced system exhibits patterns of spots and stripes like those seen in developing limbs, indicating its potential utility in hybrid continuum-discrete stochastic modeling of limb development. Lastly, we discuss the possible role in limb evolution of selection for increasingly morphostatic developmental mechanisms.


Assuntos
Padronização Corporal , Extremidades/embriologia , Modelos Biológicos , Análise Numérica Assistida por Computador , Vertebrados/embriologia , Animais , Transporte Biológico , Diferenciação Celular , Movimento Celular , Cronologia como Assunto , Simulação por Computador , Extremidades/fisiologia , Retroalimentação Fisiológica , Análise de Elementos Finitos , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais , Transdução de Sinais , Processos Estocásticos , Biologia de Sistemas , Distribuição Tecidual , Vertebrados/metabolismo
13.
Curr Top Dev Biol ; 81: 311-40, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18023733

RESUMO

Dynamical systems in which geometrically extended model cells produce and interact with diffusible (morphogen) and nondiffusible (extracellular matrix) chemical fields have proved very useful as models for developmental processes. The embryonic vertebrate limb is an apt system for such mathematical and computational modeling since it has been the subject of hundreds of experimental studies, and its normal and variant morphologies and spatiotemporal organization of expressed genes are well known. Because of its stereotypical proximodistally generated increase in the number of parallel skeletal elements, the limb lends itself to being modeled by Turing-type systems which are capable of producing periodic, or quasiperiodic, arrangements of spot- and stripe-like elements. This chapter describes several such models, including, (i) a system of partial differential equations in which changing cell density enters into the dynamics explicitly, (ii) a model for morphogen dynamics alone, derived from the latter system in the "morphostatic limit" where cell movement relaxes on a much slower time-scale than cell differentiation, (iii) a discrete stochastic model for the simplified pattern formation that occurs when limb cells are placed in planar culture, and (iv) several hybrid models in which continuum morphogen systems interact with cells represented as energy-minimizing mesoscopic entities. Progress in devising computational methods for handling 3D, multiscale, multimodel simulations of organogenesis is discussed, as well as for simulating reaction-diffusion dynamics in domains of irregular shape.


Assuntos
Extremidades/crescimento & desenvolvimento , Modelos Biológicos , Animais , Padronização Corporal , Condrogênese , Regulação da Expressão Gênica no Desenvolvimento , Substâncias de Crescimento/genética , Substâncias de Crescimento/fisiologia , Morfogênese , Processos Estocásticos , Biologia de Sistemas , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento
14.
Comput Sci Eng ; 9(4): 50-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-19526065

RESUMO

To gain performance, developers often build scientific applications in procedural languages, such as C or Fortran, which unfortunately reduces flexibility. To address this imbalance, the authors present CompuCell3D, a multitiered, flexible, and scalable problem-solving environment for morphogenesis simulations that's written in C++ using object-oriented design patterns.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(5 Pt 1): 051901, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16802961

RESUMO

The cellular Potts model (CPM) has been used for simulating various biological phenomena such as differential adhesion, fruiting body formation of the slime mold Dictyostelium discoideum, angiogenesis, cancer invasion, chondrogenesis in embryonic vertebrate limbs, and many others. We derive a continuous limit of a discrete one-dimensional CPM with the chemotactic interactions between cells in the form of a Fokker-Planck equation for the evolution of the cell probability density function. This equation is then reduced to the classical macroscopic Keller-Segel model. In particular, all coefficients of the Keller-Segel model are obtained from parameters of the CPM. Theoretical results are verified numerically by comparing Monte Carlo simulations for the CPM with numerics for the Keller-Segel model.


Assuntos
Agregação Celular/fisiologia , Quimiotaxia/fisiologia , Dictyostelium/citologia , Dictyostelium/fisiologia , Modelos Biológicos , Animais , Células Cultivadas , Simulação por Computador , Modelos Estatísticos , Processos Estocásticos
16.
Artigo em Inglês | MEDLINE | ID: mdl-17044166

RESUMO

We present COMPUCELL3D, a software framework for three-dimensional simulation of morphogenesis in different organisms. COMPUCELL3D employs biologically relevant models for cell clustering, growth, and interaction with chemical fields. COMPUCELL3D uses design patterns for speed, efficient memory management, extensibility, and flexibility to allow an almost unlimited variety of simulations. We have verified COMPUCELL3D by building a model of growth and skeletal pattern formation in the avian (chicken) limb bud. Binaries and source code are available, along with documentation and input files for sample simulations, at http:// compucell.sourceforge.net.


Assuntos
Simulação por Computador , Modelos Biológicos , Morfogênese , Animais , Fenômenos Fisiológicos Celulares , Embrião de Galinha , Galinhas , Condrogênese , Metodologias Computacionais , Sistemas de Gerenciamento de Base de Dados , Metabolismo Energético , Membro Anterior/citologia , Membro Anterior/embriologia , Membro Anterior/fisiologia , Linguagens de Programação , Interface Usuário-Computador
17.
Proc Biol Sci ; 271(1549): 1713-22, 2004 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-15306292

RESUMO

We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud.


Assuntos
Padronização Corporal/fisiologia , Condrogênese/fisiologia , Extremidades/embriologia , Modelos Biológicos , Vertebrados/embriologia , Animais , Cartilagem/citologia , Cartilagem/embriologia , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fibronectinas/metabolismo , Mesoderma/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...